
Sublinear colorings of 3-colorable graphs in linear time
Thomas Tseng

Carnegie Mellon University

Pittsburgh, Pennsylvania

tomtseng@cmu.edu

ABSTRACT
There has been extensive research on developing algorithms for

finding good colorings of 3-colorable graphs in polynomial time. In

this paper, we impose an even stricter running time requirement:

our algorithm must find colorings in linear time with respect to the

number of vertices. This means that if the graph is dense, we cannot

even afford to look at all of the edges. We show that in the word

RAM model, we can color a 3-colorable graph with O (n/ log logn)
colors in O (n) work and O (log logn) span.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; Ap-
proximation algorithms analysis; Parallel algorithms;

KEYWORDS
approximation algorithms, graph coloring

ACM Reference Format:
Thomas Tseng. 2018. Sublinear colorings of 3-colorable graphs in linear

time. In Proceedings of Special Interest Group on Harry Quimby Bovik (SIG-
BOVIK’18). ACM, New York, NY, USA, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The problem of determining whether a graph is 3-colorable is a well-

studied NP-complete problem [1]. Many researchers have worked

on polynomial-time algorithms for coloring 3-colorable graphs us-

ing as few colors as possible, with the most recent development

being an algorithm that achieves O
(
n.19996

)
colors through a com-

binatorial approach combined with semidefinite programming [2].

An interesting extension that has use in neither theory nor prac-

tice is to stipulate a stronger running time requirement. In particular,

we wonder what the best coloring achievable is usingO (n) running
time. This means that we cannot even afford to look at most of the

edges of a dense graph. Is it still possible to find a coloring with

o(n) colors?
We answer in the affirmative by giving an algorithm under

the word RAM model that produces O (n/ log logn)-colorings of
3-colorable graphs in O (n) work. Moreover, our algorithm is mas-

sively parallel with O (log logn) span.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGBOVIK’18, March 2018, Pittsburgh, Pennsylvania USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

2 APPLICATIONS
3 PRELIMINARIES
Under the word RAM model, the machine on which our algorithm

runs stores integers in words. The word sizew ≥ log
2
n scales with

the problem size n, which for our purposes is the number of vertices

in the input graph. This model allows us to perform bitwise and

arithmetic operations on words in constant time.

To more closely follow the notation used in many programming

languages for bitwise logical operators, we use & to denote bitwise

conjunction, | to denote bitwise disjunction, and ∼ to denote bitwise

negation. Specifically, if we have two boolean vectors v and u of

length ℓ, then the results of v & u, v | u, and ∼v are all boolean

vectors of length ℓ such that

(v & u)i = vi ∧ ui , (v | u)i = vi ∨ ui , (∼v )i = ¬vi .

When A is a matrix and v is a vector, A · v represents boolean

matrix multiplication, that is,

(A · v )i =
∨
j
Ai,j ∧vj .

4 ALGORITHM
Let the input graph be given in adjacency matrix format. We assume

the input graph is 3-colorable, which implies that any subgraph

of the graph is also 3-colorable. Given a parameter k , consider
partitioning the vertices into n/k contiguous chunks of k vertices.

If we can 3-color the subgraph induced by each of the n/k chunks

in O (k ) time, we can combine all these 3-colorings to achieve a

3n/k ∈ O (n/k )-coloring for the whole graph in O (n) time. We pick

k = log
4
w ∈ Ω(log logn), so 3

k (k + 1) ≤ w for sufficiently large

w (and hence for sufficiently large n). With this setting of k , we
indeed can 3-color each subgraph in O (k ) time with the help of

word-level parallelism.

Algorithm 1 Sublinear coloring algorithm

1: procedure Color(M)

2: Do everything described in the text below

3: return the resulting coloring

4: end procedure

We can represent a 3-coloring of a graph of k vertices by three

k-length bit vectors. The j-th bit of the i-th vector is set if and only if
the j-th vertex has color i . The idea here is that if we have the three
k-length bit vectors v (0) ,v (1) ,v (2)

representing a 3-coloring as well

as the adjacency matrixA of a k-vertex graph, we can check that the

coloring is valid for the graph by checking that

(
A · v (i )

)
& v (i ) = 0⃗

for each i . This is because the j-th bit of A · v (i )
is set if the j-th

vertex has any neighbors of color i , so then ANDing with v (i )
tells

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


SIGBOVIK’18, March 2018, Pittsburgh, Pennsylvania USA Thomas Tseng

us about which i-colored vertices have i-colored neighbors. Due to

how small k is, we can check all 3-colorings for validity in parallel.

We start by precomputing some constants to be reused for all

of the subgraphs. Because 3
k (k + 1) ≤ w for sufficiently large n,

we can pack the aforementioned representation of all 3
k
possible

3-colorings into three words u (0) ,u (1) ,u (2) with a bit of room to

spare for each coloring. Each word u (i ) is broken into 3
k
blocks

where each block is (k + 1) bits wide. The k-length bit vector for

the i-th color of the j-th possible 3-coloring is the low order bits of

the j-th block of u (i ) . We also precompute BH to be a word broken

into the same 3
k
blocks where each block has only its high-order

bit set, and precompute BL to be a word broken in 3
k
blocks where

each block has only its low-order bit set.

Iterate over each chunk of k vertices and do the following:

consider the subgraph induced by the k vertices. We proceed to

perform the parallel boolean matrix multiplication. For each r =
0,1, . . . ,k − 1, we fetch the r -th row of the k × k adjacency ma-

trix in constant time by jumping to the appropriate place in the

input and doing some shifting and bit masking. Multiply the word

by BL so that we now have a word wr consisting of 3
k
copies of

row r of the adjacency matrix. Now wr & u (i ) is a word of 3
k

blocks where the j-th block is non-zero if and only if the r -th entry

of the corresponding boolean matrix product is non-zero. Then

zr ,i =
(
∼
(
BH −

(
wr & u (i )

)))
& BH is a word of 3

k
blocks where

the j-th block has its high-order bit set if and only if the r -th entry

of the corresponding boolean matrix product is non-zero. Com-

puting each zr ,i is constant time, so computing all of them takes

O (k ) time. Shift and OR the zr ,i ’s together appropriately to get

words y (i ) of 3k blocks where the j-th block has the result of the

boolean matrix product corresponding to color i of the j-th col-

oring. Compute y =
(
y (0) & u (0)

)
|
(
y (1) & u (1)

)
|
(
y (2) & u (2)

)
,

which has that the j-th block is all zeroes if the j-th coloring is valid.

Compute x = (BH − y) & BH, which has that its j-th block has its

high-order bit set to 1 if the j-th coloring is valid. Binary search for

a set bit in x in O (logw ) = O (k ) time using lots of masking, and

after finding that bit, we read off a 3-coloring for the subgraph by

indexing appropriately into u (0) ,u (1) ,u (2) . This is all O (k ) time for

a chunk of k vertices.

We do this for n/k chunks of k vertices, so this takes n/k ·
O (k ) = O (n) time. By using a different set of three colors for

each subgraph, the number of colors used over the whole graph

is 3n/k ∈ O (n/ log logn) as desired. We also see that we achieve

O (k ) = O (log logn) span if we use some parallelism in precomput-

ing u (0) ,u (1) ,u (2) ,BL,BH and if we iterate over all n/k chunks of

vertices in parallel.

5 EXPERIMENTS
We implement our algorithm in C++ and measure its speedup.

Unlike in the idealized word RAM model, we do not have machines

that scale their word size to input sizes. Instead, our code uses a

fixed word size of 32 bits. With this, we output 3n/4-colorings of
3-colorable graphs.

We run our implementation on a 40-core machine with 4 ×

2.4GHz Intel 10-core E7-8870 Xeon processors and 256GB of main

memory. We compile our code with g++ version 5.3.0 and use Cilk

12 4 8 16 24 40

0.04

0.08

0.12

0.16

0.2

0.24

Number of threads

R
u
n
n
i
n
g
t
i
m
e
(
s
e
c
o
n
d
s
)

Figure 1: Running time of our implementation

Plus extensions [3] to support parallelism. A version of our code

that uses OpenMP for parallelism instead of Cilk Plus is available

at https://github.com/tomtseng/sublinear-coloring.

As our input graph for our experiments, we use the most 3-

colorable of all graphs: a graph of 200,000 vertices with no edges.

We cannot use graphs withmanymore vertices due to howmemory-

intensive it is to allocate and store adjacency matrices.

Our running time using various numbers of threads is plotted in

figure 1. The speedup curve looks good, except that it goes in the

wrong direction.

6 FUTUREWORK
Some open questions to explore in the area of coloring 3-colorable

graphs in O (n) time include the following:

• Our algorithm crucially relies on the word RAM model by

using word-level parallelism to obtain time savings. Can we

achieve o(n)-colorings in other computational models?

• Is it possible to achieve a truly sublinear coloring, that is, an

O
(
n1−ε
)
-coloring for some constant ε > 0?

• What lower bounds canwe prove assuming this O(n) running

time restriction?

7 ACKNOWLEDGMENTS
This problem of achieving the best graph coloring possible in O (n)
time was proposed by some of the Spring 2017 15-251 teaching

assistants at Carnegie Mellon University during a particularly un-

productive grading session.

REFERENCES
[1] Michael R Garey, David S. Johnson, and Larry Stockmeyer. 1976. Some simplified

NP-complete graph problems. Theoretical computer science 1, 3 (1976), 237–267.
[2] Ken-ichi Kawarabayashi and Mikkel Thorup. 2014. Coloring 3-colorable graphs

with o
(
n1/5
)
colors. In LIPIcs-Leibniz International Proceedings in Informatics,

Vol. 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[3] Charles E Leiserson. 2009. The Cilk++ concurrency platform. In Proceedings of the
46th Annual Design Automation Conference. ACM, 522–527.

https://github.com/tomtseng/sublinear-coloring

	Abstract
	1 Introduction
	2 Applications
	3 Preliminaries
	4 Algorithm
	5 Experiments
	6 Future work
	7 Acknowledgments
	References

