
CS 15-859: Algorithms for Big Data Fall 2017

Lecture 3-2 — September 21, 2017
Prof. David Woodruff Scribe: Tom Tseng

1 Affine embeddings

1.1 How to achieve an embedding

Previously, we considered the following problem: we are given matrices A and B and wish to
minimize ‖AX −B‖2F over matrices X. Our technique for the special case of linear regression was to
use a subspace embedding and then solve the embedded, lower-dimension problem exactly. However,
if B has many columns, then we cannot efficiently use subspace embeddings over the column span
of A and B. Instead, we seeked an affine embedding, where we hope to find matrix S such that

‖S(AX −B)‖F = (1± ε) ‖AX −B‖F (1)

for all X. This is indeed possible. Take a matrix S with the following properties:

• Approximate matrix product: for fixed matrices C and D,
∥∥∥CST SD − CD

∥∥∥
F
is small with

large probability.

• Subspace embedding: norms of vectors in the column space of A are approximately preserved
by S with large probability.

• Frobenius norm preserving: for a fixed matrix C, ‖SC‖2F = (1 ± ε) ‖C‖2F with constant
probability.

For example, if S is a CountSketch matrix, then these properties will be satisfied.

Define B∗ = AX∗ −B where X∗ minimizes ‖AX∗ −B‖2F. We showed previously that with the first
two properties, we get

‖S(AX −B)‖2F − ‖SB∗‖2F −
(
‖AX −B‖2F − ‖B

∗‖2F
)

= ±2ε ‖AX −B‖2F . (2)

Then we rearrange and apply the third property to get

‖S(AX −B)‖2F = (1± 2ε) ‖AX −B‖2F ± ε ‖B∗‖2F = (1± 3ε) ‖AX −B‖2F ,

where the second equality is true because ‖B∗‖2F ≤ ‖AX −B‖2F by how we defined B∗. This shows
that with good probability, we’ve achieved our goal of finding an affine embedding as defined in
equation (1) after adjusting ε.

1



1.2 Missing lemmas

In showing equation (2), we used a few simple lemmas that we deferred the proofs of. We now
present the proofs.

Lemma 1. For m× n matrices A and B,

‖A + B‖2F = ‖A‖2F + ‖B‖2F + 2 Tr
(
A>B

)
.

Proof. We can write the squared Frobenius norm of a matrix as the sum of the squared 2-norms of
the columns of the matrix. This gives

‖A + B‖2F =
n∑

j=1
‖A∗,j + B∗,j‖22 =

n∑
j=1
〈A∗,j + B∗,j , A∗,j + B∗,j〉

=
n∑

j=1
‖A∗,j‖22 +

n∑
j=1
‖B∗,j‖22 + 2

n∑
j=1
〈A∗,j , B∗,j〉 = ‖A‖2F + ‖B‖2F + 2 Tr

(
A>B

)
. �

Lemma 2. For an m× n matrix A and an n×m matrix B,

Tr (AB) ≤ ‖A‖F ‖B‖F .

Proof. We have

Tr (AB) =
m∑

i=1
〈Ai,∗, B∗,i〉 ≤

m∑
i=1
‖Ai,∗‖2 ‖B∗,i‖2 ≤

√√√√ m∑
i=1
‖Ai,∗‖22

√√√√ m∑
i=1
‖B∗,i‖22 = ‖A‖F ‖B‖F

where the first inequality comes from applying Cauchy-Schwarz on each of the terms in the summation,
and the second inequality comes from applying Cauchy-Schwarz by treating the whole summation
as an inner product. �

We also need to show that S indeed satisfifes the Frobenius norm preserving property as mentioned
in section 1.1.

Lemma 3. If S is a k × n CountSketch matrix with k = Ω
(
1/ε2) and B∗ is a n× p matrix, then

‖SB∗‖2F = (1± ε) ‖B∗‖2F with constant probability.

Proof. This is problem 3 in homework 1. The proof uses and is similar to the proof for showing
CountSketch satisfies the Johnson–Lindenstrauss property. �

2 Low-rank approximation

2.1 Motivation

Say we are given an n× d matrix A, where both dimensions n and d are large. Suppose we had a
rank-k matrix B that approximates A. Why might we want such a matrix B?

2



One reason is that B is easier to store. To store A, we need to store n× d parameters. As for B, we
can decompose B into B = UV where U has dimensions n× k and V has dimensions k × d. Then
we can store B by storing U and V , which takes nk + kd = k(n + d) parameters. If k is small, this
gives us large storage savings.

Similarly, multiplying against B is faster than multiplying against A. For a vector x ∈ Rd, computing
Ax takes O(nd) time. On the other hand, computing Bx = U(V x) takes O(k(n + d)) time.

Lastly, in some applications, we might expect that A “truly” has low rank and only has high rank
due to noise and corruption. By finding a low-rank approximation, we clean out the noise and
perhaps place the data in a more interpretable state.

This inspires the following problem: given a matrix A and a parameter k, find a matrix of B of
rank at most k such that B is close to A under some norm, that is, B minimizes ‖B −A‖ among
all rank-k matrices. This problem has applications in data mining, recommendation systems, and
other areas.

2.2 Best solution: truncated singular value decomposition

We can compute a best solution through a truncated singular value decomposition (SVD). To
approximate A with a rank-k matrix, compute the SVD of A to get A = UΣV >. Define Σk by
zeroing out all the singular values in Σ below the k-th row, and define Ak = UΣkV >. Note that
we can also drop all but the top k rows or V > and drop all but the top k columns of U without
changing Ak.

It turns out that Ak minimizes ‖Ak −A‖ among all rank-k matrices for many norms, including the
Frobenius norm and the spectral norm. More generally, Ak is the best rank-k approximation under
any unitarily invariant norm.

We can compute the SVD of A in O
(
min

(
nd2, n2d

))
time.

2.3 Faster approximate solution

2.3.1 Background

Like with linear regression, we may find that computing the exact solution to this problem is too
slow. To remedy this, we relax the problem and hope to compute some matrix A′ with good relative
error, that is, ∥∥A′ −A

∥∥ ≤ (1 + ε) ‖Ak −A‖

where Ak is a rank-k matrix minimizing ‖Ak −A‖. In this lecture, we’ll focus on the case where
the norm is the Frobenius norm.

This relaxed problem can indeed be solved more quickly in O(nnz(A) + (n + d) poly(k/ε)) time,
where nnz(A) is the number of non-zero entries in A [1]. We can show that to get reasonable error
bounds, we need to spend Ω(nnz(A)) time. Thus, for small k, this is solving time is close to optimal.
Note that even for dense matrices, we can solve the relaxed problem in almost O(nd) time, which is
a significant running time improvement over computing the SVD of A and finding an exact solution.
For sparse matrices, the improvement is even more dramatic.

3



2.3.2 Algorithm: setup

We have an n × d matrix A we wish to find a rank-k approximation to. We will use the same
high-level technique we used to solve approximate regression: we reduce the dimension of the
problem and then solve the lower-dimensional problem exactly.

Think of the rows of A as points in Rd. Take some random matrix S with m� n and n columns.
The rows of SA are random linear combinations of rows of A. Our main idea will be to project
the rows of A onto the m-dimensional row space of SA and then use SVD to find the best rank-k
approximation within this smaller space.

What sorts of matrices S will make the rank-k approximation in the projected space work well? We
can choose S to be an Ω(k/ε)× n matrix of i.i.d. normal random variables. We can also choose S
to be an Ω(k/ε)× n fast Johnson–Lindenstrauss matrix [2]. We’ll focus on the analysis when S is a
poly(k/ε)× n CountSketch matrix, as described in [1]. Although the number of rows is larger, this
choice of S lets us compute SA in O(nnz(A)) time.

2.3.3 Algorithm: existence of good solutions in row span of SA

The first thing to check is that there even exists a good rank-k approximation to A living in the
row space of SA. Consider the regression problem of minimizing the quantity ‖AkX −A‖F over
matrices X. Think of this as a sort of a thought experiment — this is not the regression problem
we actually care about, and we do not know what Ak is.

Since AkX has rank at most k and Ak is defined to be the best rank-k approximation to A, the
optimal solution is to set X to be the identity matrix I. Thus minX ‖AkX −A‖F = ‖Ak −A‖F.

Now let’s take S to be an affine embedding. In particular, S may be taken a CountSketch matrix
with poly(k/ε) rows. Notice the dependence on k, the rank of Ak, rather than d, the number of
columns of Ak. This is fine because if we let Uk be a n× k matrix with the same column space as
Ak, then for every X there is some Y such that AkX = UkY and vice versa. Thus we can replace
Ak with Uk without generality, and S can be taken as a CountSketch matrix for the smaller matrix
Uk. This explains the dependence on k.

Since S is an affine embedding, we have that for any X that

‖SAkX − SA‖F = (1± ε) ‖AkX −A‖F . (3)

We can minimize the left-hand side quantity as argminX ‖SAkX − SA‖F = (SAk)+SA. Using this
with equation (3) gives

(1± ε)
∥∥∥Ak(SAk)+SA−A

∥∥∥
F

=
∥∥∥SAk(SAk)+SA− SA

∥∥∥
F

≤ ‖SAkI − SA‖F = (1± ε) ‖AkI −A‖F = (1± ε) ‖Ak −A‖F .

Rearranging this, we have that∥∥∥Ak(SAk)+SA−A
∥∥∥

F
≤ 1 + ε

1− ε
‖Ak −A‖F ≈ (1 + 2ε) ‖Ak −A‖F , (4)

and hence Ak(SAk)+SA approximates A almost as well as how the best rank-k matrix, Ak,
approximates A. The punchline: Ak(SAk)+SA is a rank-k matrix with rows in the row space of
SA! Therefore, good rank-k approximations to A do live within the row space of SA.

4



2.3.4 Algorithm: a first attempt at solving within row space of SA

We’re not done yet. Although we found that Ak(SAk)+SA is a good rank-k approximation A with
rows in the row space of SA, we cannot compute it quickly. However, we now know

min
rank-k X

‖XSA−A‖F ≤
∥∥∥Ak(SAk)+SA−A

∥∥∥
F
≤ (1 + ε) ‖Ak −A‖F .

where XSA with rank-k X captures all rank-k matrices with rows in the row space of SA, and
where the second inequality comes from equation (4) after adjusting ε. Thus, if we can minimize
the left-hand side quantity, we’ll accomplish our goal.

By the normal equations and the Pythagorean theorem, we get

‖XSA−A‖2F =
∥∥∥A(SA)+SA−A

∥∥∥2

F
+
∥∥∥XSA−A(SA)+SA

∥∥∥2

F

Intuitively, right-multiplying A by (SA)+SA projects the rows of A onto the row space of SA. The
term

∥∥A(SA)+SA−A
∥∥2

F has no dependence on X and is the cost we’re forced to pay by working
in the row space of SA. Now we have

min
rank-k X

‖XSA−A‖2F =
∥∥∥A(SA)+SA−A

∥∥∥2

F
+ min

rank-k X

∥∥∥XSA−A(SA)+SA
∥∥∥2

F
,

and we just seek to minimize
∥∥XSA−A(SA)+SA

∥∥2
F.

Write SA = UΣV > in SVD form. This we can do in d poly(k/ε) time. Also note that U and Σ
are small, square matrices of dimension poly(k/ε)× poly(k/ε). We set this into our minimization
problem to get

min
rank-k X

∥∥∥XSA−A(SA)+SA
∥∥∥2

F
= min

rank-k X

∥∥∥XUΣV > −A(SA)+UΣV >
∥∥∥2

F

= min
rank-k X

∥∥∥(XUΣ−A(SA)+UΣ
)

V >
∥∥∥2

F
.

Since V > has orthonormal rows, we can remove V > on the right-hand side without affecting the
norm, and hence

min
rank-k X

∥∥∥XSA−A(SA)+SA
∥∥∥2

F
= min

rank-k X

∥∥∥XUΣ−A(SA)+UΣ
∥∥∥2

F
.

Dropping V > corresponds to switching to working within a coordinate representation of the row
space of SA. This is nice because it decreases the number of columns we’re concerned about.

Next, consider that if A has high rank, UΣ will be invertible. (If A has low rank, then we can forget
about S and operate within A’s row space.) Therefore, minimizing over XUΣ for rank-k X is the
same as minimizing over Y for rank-k X, and

min
rank-k X

∥∥∥XSA−A(SA)+SA
∥∥∥2

F
= min

rank-k Y

∥∥∥Y −A(SA)+UΣ
∥∥∥2

F
.

To solve the minimization problem on the right-hand side, we can compute the truncated SVD of
A(SA)+UΣ.

Still, we haven’t achieved the running time we want. We can compute the SVD of SA quickly and
then subsequently find (SA)+ and UΣ. However, multiplying (SA)+UΣ on the left by A is too
costly to afford.

5



2.3.5 Algorithm: getting faster by sketching the sketch

Roughly speaking, the bottleneck we’re hitting here is that projecting the rows of A onto the row
space of SA is costly. We have issues with the term A(SA)+UΣ, and before we dropped the V >

factor, this term was A(SA)+UΣV > = A(SA)+SA, which is the projection of A onto the row space
of SA. The rows of A(SA)+UΣ correspond to a coordinate representation of the projection of the
rows of A. If we knew A(SA)+UΣ, we could compute its SVD and be done.

What if we could instead quickly approximately project the rows of A? In fact, we already know how
to do that. Projection is just least-squares regression, which we can do approximately by sketching.
This inspires us to sketch again to reduce the dimensions of the problem.

In the previous section, we wanted to solve

min
rank-k X

‖XSA−A‖2F .

To avoid our previous issues, we use another affine embedding. Let R be an affine embedding matrix,
say a transposed CountSketch matrix with poly(k/ε) columns, so that

‖XSAR−AR‖2F = (1± ε) ‖XSA−A‖2F

for all X. (We remark that R needs to be a larger CountSketch matrix than S, that is, the number
of columns of R is greater than the number of rows of S.)

Note that computing AR and SAR takes only nnz(A) time, so we can indeed set up this new
regression problem of solving

min
rank-k X

‖XSAR−AR‖2F .

We saw previously that outputting argminrank-k X ‖XSA−A‖2F gives an approximately optimal rank-
k approximation to A, and therefore now we have that outputting argminrank-k X ‖XSAR−AR‖2F
will give an approximately optimal approximation as well. Similar to in the previous section, by the
normal equations and the Pythogrean theorem,

min
rank-k X

‖XSAR−AR‖2F =
∥∥∥AR(SAR)+SAR−AR

∥∥∥2

F
+ min

rank-k X

∥∥∥XSAR−AR(SAR)+SAR
∥∥∥2

F
.

Now we just want to solve minrank-k X

∥∥XSAR−AR(SAR)+(SAR)
∥∥2

F.

Let’s relax this problem by instead solving minrank-k X

∥∥Y − (AR)(SAR)+SAR
∥∥2

F exactly through
truncated SVD. This is the point at which we were having issues in last section, but this time, we can
compute the SVD quickly. The dimensions are now small enough that computing (AR)(SAR)+SAR
and its SVD takes only O((n + d) poly(k/ε)) time.

This gives us some rank-k Y . This Y actually must take on the form XSAR for some X, so we
have exactly what we want. To see this, note that if Y didn’t take on the form XSAR, then some
row of Y doesn’t lie in the row space of SAR. Then define Y ′ = Y (SAR)+SAR by projecting Y ’s
rows onto the row space of SAR. We have∥∥∥Y ′ −AR(SAR)+SAR

∥∥∥2

F
=
∥∥∥(Y −AR(SAR)+SAR

)
(SAR)+SAR

∥∥∥2

F
. (5)

For any projection matrix P and matrix C, we have by the Pythagorean theorem that ‖CP‖2F ≤
‖CP‖2F + ‖C(I − P )‖2F = ‖C‖2F with equality only if C already lies in P ’s space. In particular,

6



taking P = (SAR)+SAR and C = Y − AR(SAR)+SAR and combining with equation (5) gives∥∥Y ′ −AR(SAR)+SAR
∥∥2

F <
∥∥Y −AR(SAR)+SAR

∥∥2
F, which contradicts the optimality of Y .

Thus we can recover X = Y (SAR)+ and output XSA. Actually, XSA might be too large to output.
Instead, we give the output X · (SA) in factored form by outputting the n× poly(k/ε) matrix X
and the poly(k/ε)× d matrix SA.

2.3.6 Algorithm: summary

That was a lot of discussion and analysis, but in the end, the algorithm is easy to describe. Pick
CountSketch matrices S and R. Compute SA, SAR, and AR. Compute Y to be the rank-k minimizer
of
∥∥Y −AR(SAR)+(SAR)

∥∥2
F by truncated SVD. Then output (Y (SAR)+)(SA) in factored form.

This all takes O(nnz(A) + (n + d) poly(k/ε)) time, which is much faster than applying truncated
SVD to A directly.

References

[1] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 81–90. ACM, 2013.

[2] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24
October 2006, Berkeley, California, USA, Proceedings, pages 143–152, 2006.

7


	Affine embeddings
	How to achieve an embedding
	Missing lemmas

	Low-rank approximation
	Motivation
	Best solution: truncated singular value decomposition
	Faster approximate solution
	Background
	Algorithm: setup
	Algorithm: existence of good solutions in row span of SA
	Algorithm: a first attempt at solving within row space of SA
	Algorithm: getting faster by sketching the sketch
	Algorithm: summary



