
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #5: Distance Preserving Trees February 3, 2017
Lecturer: Anupam Gupta Scribe: Titouan Rigoudy, Tom Tseng

In this lecture we will study the problem of finding low-stretch spanning trees in general graphs.
A low-stretch spanning tree T in a graph G is a spanning tree for G with the additional constraint
that the distance between any two vertices in T is at most a small constant factor times the distance
between the two same vertices in G. In other words, the tree does not “stretch” distances too much.

Throughout this lecture, we will be considering a graph G = (V,E) with edge lengths (le)e∈E . As
is convention, we let n = |V | and m = |E| unless otherwise noted. We define dG : V × V → R+ to
be the distance function in G. That is, for all u, v in V , dG(u, v) is the length of the shortest path
in G from u to v.

1 Shortest Path Trees

At best, we could hope to find exact distance preserving trees, i.e.:

Definition 5.1. Let T be a spanning tree of G. We call T an all-pairs shortest path tree in G if
for all u, v in V , dT (u, v) = dG(u, v).

For any single source u in V , it is easy to compute a single-source shortest path tree T such
that for all v in V , dT (u, v) = dG(u, v). This can be obtained by running Dijkstra’s algorithm or
Bellman-Ford as applicable.

Unfortunately, an all-pairs shortest path tree usually does not exist. Consider the clique of n nodes,
Kn, with unit edge lengths. Any spanning tree T for Kn will be missing most of the edges, and
thus there must be nodes u, v in V such that dT (u, v) ≥ 2 even though dG(u, v) = 1.

2 Low-Stretch Spanning Trees

This leads us to consider a relaxed definition. Say we do not require distances in T to be equal to
those in G, but to be at most multiplied by a constant factor α.

Definition 5.2. Let T be a spanning tree of G, and let α ≥ 1. We call T a (deterministic) α-stretch
spanning tree of G if

dG(u, v) ≤ dT (u, v) ≤ α dG(u, v).

holds for all u, v ∈ V .

Naturally, we can wonder if there exists a “small” value for α such that for any graph G we can
always find an α-stretch spanning tree of G. The answer to that question is also unfortunately no.

For any n, consider the cycle of n nodes, Cn. Any spanning tree T in Cn is a path of n− 1 edges,
built by simply removing one edge {u, v} from Cn. The distance between the two endpoints of that
removed edge in T is dT (u, v) = n − 1 = (n − 1)dG(u, v). Therefore, for all α, there exist graphs
containing no α-stretch spanning tree.

3 Motivation

So far, it seems as though we cannot give a good solution to this problem in general. But why is
this problem even interesting in the first place? The motivation is that some problems are much

1

easier to solve on trees than on general graphs, and using low-stretch spanning trees enables us to
give approximate solutions in a reasonable amount of time to such problems.

One such example is the k-median problem. Given k ≥ 1, we want to find a subset C ⊆ V of k
vertices that minimizes

∑
v∈V dG(v, C).

If G is a tree, then, through dynamic programming, we can compute an exact solution in time
polynomial in n and k. On the other hand, if G is a general graph, then the problem is NP-hard.
However, using an α-stretch spanning tree of G, we can compute an α-approximate solution for G.
The algorithm is simple:

1. Find an α-stretch spanning tree T of G.

2. Solve the k-median problem on T to get CT .

3. Return CT .

Claim 5.3. CT is an α-approximate solution to the k-median problem for G.

Proof. Suppose that CG is an optimal solution for G. Then the following inequalites hold:∑
v∈V

dT (v, CG) ≤ α
∑
v∈V

dG(v, CG), (5.1)∑
v∈V

dT (v, CT) ≤
∑
v∈V

dT (v, CG),∑
v∈V

dG(v, CT) ≤
∑
v∈V

dT (v, CT).

Therefore we have ∑
v∈V

dG(v, CT) ≤ α
∑
v∈V

dG(v, CG).

Low-stretch spanning trees can also be used to more efficiently solve linear systems of the form A~x =
~b where A is the Laplacian matrix of some graph G. To do this, we let P be the Laplacian matrix
of a low-stretch spanning tree of G, and then we solve the system P−1A~x = P−1~x instead. This
is called preconditioning with P . It turns out that this preconditioning allows certain algorithms
for solving linear systems to converge faster to a solution. This technique also lets us solve linear
systems where A is a symmetric, diagonally dominant matrix more efficiently.

4 Randomization to the rescue

Now that we know that this problem is an interesting one, how do we approach it without running
into the issues outlined above? If we cannot get a small deterministic value for α, let us try to get
a small value for α in expectation.

First, we will need to amend our definition to accomodate the fact that we are no longer looking
for trees in a deterministic fashion.

Definition 5.4. A (randomized) low-stretch spanning tree of stretch α for a graph G = (V,E) is
specified as a probability distribution D over spanning trees of G such that

dG(u, v) ≤ dT (u, v) for all T in the support of D,

E
T∼D

[dT (u, v)] ≤ α dG(u, v) (5.2)

for all u, v ∈ V .

2

This definition is interesting because a randomized low-stretch spanning tree preserves distances
“on average”. For example, if one samples k = c log n trees T1, . . . , Tk from such a distribution for
some well-chosen c, then for all u, v in V , with high probability, there exists i ∈ {1, . . . , k} such
that dTi(u, v) ≤ α dG(u, v).

Exercise 5.5. Prove that if inequality (5.2) holds only for all {u, v} ∈ E, then the inequality also
holds for all (u, v) ∈ V × V . (Hint: use the triangle inequality.)

Remark 5.6. With this definition, we can get a small α for Cn for all n. Let D be the uniform
distribution over spanning trees of Cn. Picking a tree from D is equivalent to picking an edge
uniformly at random from Cn and deleting it. For all {u, v} ∈ E, there is only a 1 in n chance of
deleting the edge from u to v. Thus we now have

E
T∼D

[dT (u, v)] =
n− 1

n
· 1 +

1

n
(n− 1)

= 2
n− 1

n
< 2.

Then by exercise 5.5, D produces spanning trees of stretch 2 for Cn.

Remark 5.7. The previous approximation algorithm for k-median still works, only now it is a
randomized algorithm, and the bound only holds in expectation. Inequality (5.1) becomes

E
T∼D

[∑
v∈V

dT (v, CG)

]
≤ α

∑
v∈V

dG(v, CG),

and thus we obtain

E
T∼D

[∑
v∈V

dG(v, CT)

]
≤ α

∑
v∈V

dG(v, CG).

We can now prove interesting results using this notion of embeddings into trees.

Theorem 5.8. [AN12] For any graph G, there exists a spanning tree distribution DAN with stretch
factor αAN = O(log n log logn) and such that we can sample trees from DN in O(m log n log logn)
time.

Theorem 5.9. [AKPW95] For infinitely many n, there exist graphs G on n vertices such that any
α-stretch spanning tree distribution D on G must have α = Ω(log n). In fact, G can be taken to be
the n-vertex square grid or the n-vertex hypercube.

In this lecture, we will restrict ourselves to metric graphs and prove a looser upper bound. The
restriction to metric graphs is for simplicity; the following results can be extended to graphs in
general.

Definition 5.10. A metric graph G is a complete graph such that edge lengths satisfy the triangle
inequality, i.e. for all u, v, w in V , we have l(u,v) ≤ l(u,w) + l(w,v).

We will give a proof of the following theorem.

Theorem 5.11. [Bar96] For any metric graph G, there exists an efficiently samplable αB-stretch
spanning tree distribution DB such that αB = O (log n log ∆), where

∆ =
max {dG(u, v) | u, v ∈ V }

min {dG(u, v) | u, v ∈ V, u 6= v}
=
dmax(G)

dmin(G)

is called the aspect ratio of G.

3

Before proving the theorem, we need to define an additional notion of graph decomposition.

Definition 5.12. Given a metric graph G = (V,E) and parameters D > 0 and β > 0, a low-
diameter decomposition scheme (or LDD scheme1) is a randomized algorithm that partitions V
into V1, . . . , Vt such that

• for all i ∈ {1, . . . , t} and for all u, v in Vi, we have dG(u, v) ≤ D.

• for all u, v ∈ V such that u 6= v, we have Pr[u, v in different clusters] ≤ dG(u,v)
D β.

We will assume the following lemma and prove it later.

Lemma 5.13. For any D > 0, there exists an LDD scheme with β = O(log n).

Using this lemma, we can define the following algorithm to sample from Bartal’s αB-spanning tree
distribution:

Algorithm: Bartal(G, i): . Assumption: dmax(G) ≤ 2i

• As a base case, return G if G is a single vertex.

• Use lemma 5.13 with D = 2i−1 to get a vertex partition V1, . . . , Vt with induced subgraphs
G1, . . . , Gt.

• For every j in {1, . . . , t}, recursively apply the algorithm: Tj ← Bartal(Gj , i− 1).

• Add edges of length 2i from the root r1 of T1 to the roots of T2, . . . , Tt.

• Return the resulting tree rooted at r1.

Now we can prove theorem 5.11.

Proof of theorem 5.11. By scaling the edge lengths appropriately, we may assume that dmin(G) = 1
and dmax(G) = ∆ without loss of generality.

We define the distribution DB by sampling T ∼ DB via T = Bartal(G, blog ∆c + 1). We want to
show α = O(log n log ∆).

Claim: For a graph G′ = (V ′, E′) and i ∈ N, let T ′ = Bartal(G′, i). Then E[dT ′(u, v)] ≤
8iβdG′(u, v) for all u, v in V ′.

To prove the claim, we proceed by induction on i. Let T1, . . . , Tt be the result of running the
algorithm recursively on G1, . . . , Gt, a β-LDD of G′. Let u, v be two vertices in V ′, let a, b be
indices such that u is in Ta and v is in Tb, and let ra, rb be the roots of Ta, Tb. Then we have

E[dT ′(u, v)] = E[dT ′(u, v) | a 6= b] Pr[a 6= b] + E[dT ′(u, v) | a = b] Pr[a = b].

We also know

E[dT ′(u, v) | a 6= b] = E[dTa(u, ra) + dT ′(ra, r1) + dT ′(r1, rb) + dTb(rb, v)],

Pr[a 6= b] ≤ β dG′(u, v)

2i−1
,

E[dT ′(u, v) | a = b] ≤ 8(i− 1)βdG′(u, v) (by induction hypothesis),

Pr[a = b] ≤ 1.

1This is not standard notation.

4

r1 ra rb

v

u

2i

2i

2i−1

2i−2

Figure 5.1: Diagram of the decomposition formed by Bartal’s algorithm

Recursively, since the path from u to ra is made of edges from roots to roots,

dTa(u, ra) ≤ 1 + 2 + 4 + · · ·+ 2i−1 < 2i.

Identically, dTb(rb, v) < 2i. Furthermore, we know that dT ′(ra, r1) ≤ 2i and dT ′(r1, rb) ≤ 2i. This
gives

E[dT ′(u, v) | a 6= b] < 2i + 2i + 2i + 2i = 2i+2,

which finally gives us

E[dT ′(u, v)] < 2i+2 β dG′(u, v)

2i−1
+ 8(i− 1)β dG′(u, v)

= 8(1 + i− 1)β dG′(u, v)

= 8i β dG′(u, v).

This proves the claim. Then we set G′ = G and i = blog ∆c + 1 to get that αB = O(iβ) =
O(log ∆ log n).

Finally, we give a LDD scheme that proves lemma 5.13.

Algorithm: LDD(G,D):

• Pick any unmarked vertex v.

• Sample Rv from the geometric distribution Geom(p = min(1, 4 lognD)).

• Mark all unmarked vertices w such that dG(v, w) ≤ Rv as belonging to v’s cluster Gv.

• If there exists an unmarked vertex, repeat.

5

v

x

y
d(v, y)

d(v, x) d(x, y)

Rv ≤ D
2

Gv

Figure 5.2: A cluster forming around v in the LDD process, separating x and y. The graph is
complete, but many edges are omitted in this diagram to reduce clutter.

Proof of lemma 5.13. First, we check that each cluster’s diameter will be at most D with high
probability. It suffices to check that Rv ≤ D/2 for each cluster Gv. This is because G is a metric
graph. Thus, if Rv ≤ D/2, then for any x, y ∈ Gv, we invoke the triangle inequality to get

dG(x, y) ≤ dG(x, v) + dG(v, y) ≤ D/2 +D/2 = D.

The probability that Rv > D/2 for one particular cluster is

Pr[Rv > D/2] = (1− p)D/2 ≤ e−pD/2 ≤ e−2 logn =
1

n2
.

Therefore, by union bound, the probability that all clusters Gv have Rv ≤ D/2 is

Pr[∀v ∈ V, Rv ≤ D/2] = 1−Pr[∃v ∈ V, Rv > D/2]

≥ 1− n

n2

= 1− 1

n
.

This proves that each cluster’s diameter will be small with high probability. Next, we must show
that for some β = O(log n), the inequality Pr[x, y in different clusters] ≤ β dG(u,v)

D holds for all
distinct vertices x, y ∈ V .

Sampling from the geometric distribution is like repeatedly flipping a coin and counting the number
of flips we get before the first heads. This process is memoryless, meaning that if we have already
performed N flips, the probability that we will get a heads is still p.

Let x and y be distinct vertices, and consider the first time at which one of these vertices is inside
the current ball centered at, say, vertex v. Without loss of generality, let the vertex inside the
current ball be x. At this point, we have performed dG(v, x) flips. The probability that we separate

6

x and y is then the probability that we get a heads within dG(v, y) flips total, i.e. within the next
dG(v, y)− dG(v, x) flips. Then we can use union bound, and since G is a metric graph, we can use
the triangle inequality as well to get

Pr[x, y in different clusters] ≤ (dG(v, y)− dG(v, x)) p ≤ dG(x, y) p ≤ 4 log ndG(x, y)

D
.

Therefore, this LDD scheme gives us β = O(log n).

5 Concluding Remarks

There is a natural correspondence between metric graphs and finite metric spaces. Thus, in this
lecture, we saw a way to probabilistically approximate a finite metric space with a simpler metric
space over a tree. This idea of approximating metric spaces has been extensively studied in various
forms.

For example, the Johnson–Lindenstrauss lemma, which we will see in a future lecture, says that
if we have n points in finite-dimensional Euclidean space, we can embed the points in RO(logn/ε2)

such that distances between points are disorted by a factor of at most 1± ε [JL84].

Another result by Matoušek shows that a finite metric space on n points can be embedded into
`p-space with O((log n)/p) distortion [Mat97].

References

[AKPW95] Noga Alon, Richard M Karp, David Peleg, and Douglas West. A graph-theoretic game
and its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100,
1995. 5.9

[AN12] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory
of Computing, STOC ’12, pages 395–406, New York, NY, USA, 2012. ACM. 5.8

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applica-
tions. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Sympo-
sium on, pages 184–193. IEEE, 1996. 5.11

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into
a hilbert space. Contemporary mathematics, 26(189-206):1, 1984. 5

[Mat97] Jǐŕı Matoušek. On embedding expanders into `p spaces. Israel Journal of Mathematics,
102(1):189–197, 1997. 5

7

	Shortest Path Trees
	Low-Stretch Spanning Trees
	Motivation
	Randomization to the rescue
	Concluding Remarks

